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POINTWISE CONTRACTION CRITERIA FOR THE EXISTENCE
OF FIXED POINTS

£

Frank H. Clarke

1. Intpoduction

Let (X,p) be a complete metric space, and let a function T :X - X
be given. The celebrated contraction principle of Banach asserts that
if there exists a number o in (0,1) such that
(*) p(Tx, Ty) < op(Xx,y) Vx, ¥y € X,

(T 1is then said to be a contraction) then T has a (unique) fixed point;
i.e. a point x such that Tx = x.

Our purpose is to investigate what can be said if (*) holds only in
some local sense. For example, suppose for each x in X there is some
neighborhood N(x) of x such that
() p(Tx, Ty) < op(x,y) ¥y € N(x) .

Must T have a fixed point? That the answer is negative follows from
the fact that any function T satisfies this condition when p is the
discrete metric (i.e. when the raige of p is {0,1}). Thus any such
"pointwise'' criterion must be accompanied in some way by at least an

indirect hypothesis concerning the metric structure.

P
Department of Mathematics, University of British Columbia, Vancouver,
B.C., Canada V6T 1W5.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




ey o .. &

In the next section we discuss the main result of this paper, a
fixed point theorem for 'weak directional contractions'', The proof of
this result is given in §4, while § 3 is devoted to refinements of the

theorem and some related matters.




2. Weak directional contractions

-Let x and y be points in X. The open interval between x
and y, denoted (x,y), is given by
(x,y) = {zeX:z#x, 2%y, p(x,2) + p(2,¥) = p(x,¥)] .
Let T:X - X be agiven mapping. We define DT(x;y), the

lower derivate of T at x in the direction of y, as follows:

DT(x;y) = 0 if y = x, and otherwise
DT(x;y) = lim inf p(Tz, Tx)/p(2z, X) .
z+X
ze(x,y)

This has the usual meaning: for each €& >0, we take the infimum
of p(Tz, Tx)/p(z,x) over those z in (x,y) such that p(x,2z) <e
(this is +% if no such 2z exist). The limit of these infima is DT(x;y).
Definition 1. T is said to be a weak directional contraction if T is
continuous and if there exists a number ¢ in [0,1) such that
DT(x;Tx) <¢ forall x in X.
Remark 1. Note that in order for T to be a weak directional contraction,
it is necessary that (x,Tx) contain points arbitrarily near x whenever
x # Tx. Thus if p is the discrete metric, the only weak directional
contraction on X is the identity mapping. This example shows that the

\
fixed point whose existence is asserted in the following theorem need not

be unique.

Theorem 1. Every weak directional contraction on a complete metric space

has a fixed point.




Remark 2. M. Edelstein [1] [ 2] has investigated the question of fixed
points for mappings which are contractions in a certain local and uniform
sense, by adapting the Picard method of successive approximations
(which is ineffective in the ccntext of Theorem 1). Other extensions of
the contraction principle are possible when a Banach space structure is
present; we refer the reader to Chapter 5 of the monograph by D. R. Smart [ 4].
The following example lies outside the bounds of the results cited above.
Example. Let X = RZ, with the norm given by:
[, v I = [x] + Iyl .
If p((x,y),(x,y)) = l(x-x,y-y)ll, then (X,p) is a complete metric
space. It is easy to see that the open interval between any two distinct
points (xl, yl) and (xz, yz) consists of the closed solid rectangle
having the two given points as diagonally opposite corners, with those
two points deleted (this reduces to a line segment in the usual sense if
X and X, or vy and Y, coincide).
We define T:X - X as follows:
T(x,y) = (3x/2 - y/3, x +y/3) .
It is easily seen that T is not a contraction (even in a local sense).
However, T is a weak directional contraction. For let T(x,y) # (x,y).
Then (setting T(x,y) = (a,b)) it follows that b # y, so that the open
interval between (x,y) and T(x,y) contains points of the form (x, z)
with 2z arbitrarily close to y. But for such points we have:
p(T(x, 2), T(x, ¥))/p((x, 2), (x,¥)) = 2/3 .
Note that the fixed points of T are all the points of the form

(x, 3x/2), % ¢ R.




3. Other formulations of the theorem

The following extension of Theorem 1 applies to certain cases in
which DT(x;Tx) is not necessarily bounded away from 1.

Theorem 2. Let T be a continuous selfmap on a complete metric space

X such that DT(x;Tx) <1 for all x. Suppose that every sequence

{xn? in X such that QT(xn;Txn) is not bounded away from 1 has a

cluster point. Then T has a fixed point.

Remark 3. The example X = [1,%), p = Euclidean metric, Tx = x +1/x
shows that the cluster point condition cannot be dispsnsed with. To

see that Theorem 2 is indeed more general than Theorem 1, consider a
differentiable function f :[0,1] - [90,1] such that [fr]<1 but [f]
is not bounded away from 1.

A metric space X is said to be (metrically) convex if (x,y) # ¢
for every pair (x,y) of distinct points. A convex subset of a Banach
space has this property.

Definition 2. T is called a pointwise contraction if for some o in [o,1)
we have, for all x,
lim sup p(Ty, 1x)/p(y, %) <o .
y =X
y#X
Corollary 1. Every pointwise contraction on a complete convex metric
space has a fixed point.

That this follows from Theorem 1 is a consequence of the following:

(a) every pointwise contraction is continuous and (b) in a complete convex




space, (x,y) contains points arbitrarily near x whenever x # Y.
These imply that a pointwise contraction on a complete convex space
is a weak directional contraction.

When the metric space is convex, Corollary | affords a criterion
which may be easier to verify than the global contraction condition. It
suffices, for example, to prove the following ''growth condition'': for
every x there is a number K(x) such that for all Y near X,

p(Ty, Tx) < op(y, %) + K(x)p(y, x)° .
Question: Is every pointwise contraction on a complete convex metric

space a global contraction ?




4. Proof of the theorems

It suffices to prove Theorem 2. We now state for convenience the
following theorem of Ivar Ekeland [ 3]:
Theorem. Let F:X -[0,%) be a continuous function bounded below,
and let € >0 be given. Then there is a point u such that

(i) F(u) <infF +¢ ,
X

(ii) F(x) - F(u) > -ep(x,u) ¥x e X .
Let us define F :X -[0,9) as follows:
Fix) = p(lx %) -
Since T is continuous, it follows that F is continuous. Applying
Ekeland's theorem, we deduce the existence, for each positive integer K,

of a point u, such that

K
(1) F(uK) <inf F + 1/K ,
X
(2) F(x) + p(X,UK)/KZ F(uK) Vxe X.

If for any K we have F(uK) = 0, then ug is a fixed point and we are

done. So let us suppose that F(UK) is positive for each K.
Claim: _QT(uK;'I'uK) >1-1/K.

Since u, # T(u

K there exists a sequence {xn} in (uK, TuK) such

K

that p(uK,xn) converges to 0 as n - ®, and

(3) lim  p(Tx_, Tu,)/p(x_,u,) = DT(u;Tu,) .
: N ufuiy i pl%y) ug (ugiTuy)

Siits
Fiew?




By definition,

(4) p(uK,TuK) = plug xn) + p(Xn, TuK) :

We find (in light of (2)):

o(u,, Tu ) < p(xn, Txn) + p(Xn, uK)/K

K’

IA

p(xn, TUK) + gt T, TR ) + p(x ,u )/K

K?

IA

p(Xn, Tuy

where of(p ( ))/p( u,) -0 as n - o,

K
Combining this with (4), we arrive at:

(5) (1 o 1/K)P(xn7 UK) = P_T(ul(’ TuK)p(Xny u + O(P(xn, UK)) .

%
Dividing across by p(Xn, uK) and letting n tend to %, we obtain
the required inequality.

The hypotheses now imply that the sequence {uK} has a cluster
point u. In view of (1), we have
(6) ’ p(x, Tx) > p(u, Tu) ¥x € X .
If u= Tu we are done, so let us suppose the contrary and show that
(6) leads to a contradiction. Arguing as we did to obtain (5), we obtain

a sequence {xn} in (u, Tu) such that p(xn,u) tends to 0 as

p(x_, u) < _QT(u;Tu)p(xn,U) + °(‘°(xn’ u)) ,

where ofp(x ,u))/p(x u) -0 as n - ®©. This implies
DT(u;Tu) > 1,

which contradicts the hypotheses. QB D

) + QT(uK;TuK)r’.xn, uK) +olp(x , up)) + p(xn,uK)/K,
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